Cardiac progenitor cells (CPCs) being multipotent offer a promising source for cardiac repair due to their ability to proliferate and multiply into cardiac lineage cells. Here, we explored a novel strategy for human CPCs generation from human induced pluripotent stem cells (hiPSCs) using a cardiogenic small molecule, isoxazole (ISX-9) and
Cardiac progenitor cells (CPCs) being multipotent offer a promising source for cardiac repair due to their ability to proliferate and multiply into cardiac lineage cells. Here, we explored a novel strategy for human CPCs generation from human induced pluripotent stem cells (hiPSCs) using a cardiogenic small molecule, isoxazole (ISX-9) and their ability to grow in the scar tissue for functional improvement in the infarcted myocardium.
Cardiac stem cell therapy offers the potential to ameliorate postinfarction remodeling and development of heart failure but requires optimization of cell-based approaches. Cardiac progenitor cells (CPCs) induction by ISX-9, a small molecule possessing antioxidant, prosurvival, and regenerative properties, represents an attractive potentia
Cardiac stem cell therapy offers the potential to ameliorate postinfarction remodeling and development of heart failure but requires optimization of cell-based approaches. Cardiac progenitor cells (CPCs) induction by ISX-9, a small molecule possessing antioxidant, prosurvival, and regenerative properties, represents an attractive potential approach for cell-based cardiac regenerative therapy. Here, we report that extracellular vesicles (EV) secreted by ISX-9-induced CPCs (EV-CPCISX-9) faithfully recapitulate the beneficial effects of their parent CPCs with regard to postinfarction remodeling.
Duchenne muscular dystrophy (DMD) is caused by mutations of the gene that encodes the protein dystrophin. A loss of dystrophin leads to severe and progressive muscle wasting in both skeletal and heart muscles. Human induced pluripotent stem cells (hiPSCs) and their derivatives offer important opportunities to treat a number of diseases. H
Duchenne muscular dystrophy (DMD) is caused by mutations of the gene that encodes the protein dystrophin. A loss of dystrophin leads to severe and progressive muscle wasting in both skeletal and heart muscles. Human induced pluripotent stem cells (hiPSCs) and their derivatives offer important opportunities to treat a number of diseases. Here, we investigated whether givinostat (Givi), a histone deacetylase inhibitor, with muscle differentiation properties could reprogram hiPSCs into muscle progenitor cells (MPC) for DMD treatment.
Source: Muscular Dystrophy News
Source: Muscular Dystrophy News
Source: Biobanking
Source: Global Genes, RARE Daily
Source: Businesswire
Source: Businesswire
Source: Businesswire
Source: Businesswire
Copyright © 2014 IPS HEART - All Rights Reserved.
Notice: Please ignore HR recruitment emails that are not from the domain "@ipsheart.com", they are not associated with IPS HEART.